People have more than doubled the global flows of phosphorus, but unlike nitrogen, the other main fertilizer, phosphorus is mined. David A. Vaccari, an engineering professor from Stevens Institute of Technology writes in Scientific American about Phosphorus Famine: The Threat to Our Food Supply:
"Altogether, phosphorus flows now add up to an estimated 37 million metric tons per year. Of that, about 22 million metric tons come from phosphate mining. The earth holds plenty of phosphorus-rich minerals—those considered economically recoverable—but most are not readily available. The International Geological Correlation Program (IGCP) reckoned in 1987 that there might be some 163,000 million metric tons of phosphate rock worldwide, corresponding to more than 13,000 million metric tons of phosphorus, seemingly enough to last nearly a millennium.
These estimates, however, include types of rocks, such as high-carbonate minerals, that are impractical as sources because no economical technology exists to extract the phosphorus from them. The tallies also include deposits that are inaccessible because of their depth or location offshore; moreover, they may exist in underdeveloped or environmentally sensitive land or in the presence of high levels of toxic or radioactive contaminants such as cadmium, chromium, arsenic, lead and uranium.
Estimates of deposits that are economically recoverable with current technology—known as reserves—are at 15,000 million metric tons. That is still enough to last about 90 years at current use rates. Consumption, however, is likely to grow as the population increases and as people in developing countries demand a higher standard of living. Increased meat consumption, in particular, is likely to put more pressure on the land, because animals eat more food than the food they become.
Phosphorus reserves are also concentrated geographically. Just four countries—the U.S., China, South Africa and Morocco, together with its Western Sahara Territory—hold 83 percent of the world’s reserves and account for two thirds of annual production. Most U.S. phosphate comes from mines in Florida’s Bone Valley, a fossil deposit that formed in the Atlantic Ocean 12 million years ago. According to the U.S. Geological Survey, the nation’s reserves amount to 1,200 million metric tons. The U.S. produces about 30 million metric tons of phosphate rock a year, which should last 40 years, assuming today’s rate of production.
Already U.S. mines no longer supply enough phosphorus to satisfy the country’s production of fertilizer, much of which is exported. As a result, the U.S. now imports phosphate rock. China has high-quality reserves, but it does not export; most U.S. imports come from Morocco. Even more than with oil, the U.S. and much of the globe may come to depend on a single country for a critical resource.
Some geologists are skeptical about the existence of a phosphorus crisis and reckon that estimates of resources and their duration are moving targets. The very definition of reserves is dynamic because, when prices increase, deposits that were previously considered too expensive to access reclassify as reserves. Shortages or price swings can stimulate conservation efforts or the development of extraction technologies.
And mining companies have the incentive to do exploration only once a resource’s lifetime falls below a certain number of decades. But the depletion of old mines spurs more exploration, which expands the known resources. For instance, 20 years ago geologist R. P. Sheldon pointed out that the rate of new resource discovery had been consistent over the 20th century. Sheldon also suggested that tropical regions with deep soils had been inadequately explored: these regions occupy 22 percent of the earth’s land surface but contain only 2 percent of the known phosphorus reserves.
Yet most of the phosphorus discovery has occurred in just two places: Morocco/Western Sahara and North Carolina. And much of North Carolina’s resources are restricted because they underlie environmentally sensitive areas. Thus, the findings to date are not enough to allay concerns about future supply. Society should therefore face the reality of an impending phosphorus crisis and begin to make a serious effort at conservation."
(Por Garry Peterson, Resilience Science, 03/06/2009)