Tipo de trabalho: Tese de Doutorado
Instituição: Instituto de Geociências da Universidade Estadual de Campinas (Unicamp/SP)
Ano: 2008
Autor: Gustavo Manzon Nunes
Resumo:
O conhecimento da biodiversidade amazônica, em especial o relacionado à sua cobertura vegetal, tem sido alvo de amplos estudos envolvendo a investigação de seus processos ecológicos-evolutivos e o seu funcionamento como um conjunto integrado e complexo de unidades biológicas. O desenvolvimento de tecnologias e metodologias no campo do Sensoriamento Remoto, cada vez mais vem se tornando essencial na análise, discriminação e monitoramento de vastas áreas dominadas pela Floresta Tropical. Esta tese buscou avaliar os aspectos relacionados à potencialidade das imagens dos sensores Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)/Terra e Synthetic Aperture Radar (SAR)/R99-B, para a discriminação de fitofisionomias existentes nas Reservas de Desenvolvimento Sustentável Amanã e Mamirauá (RDSA e RDSM). A partir de processamentos realizados com os dados do sensor MODIS, Produto MOD13 – Índices de Vegetação EVI (Enhanced vegetation ÍNDEX) e NDVI (Normalized Difference Vegetation Index), foi avaliado o comportamento sazonal/temporal de quatro fitofisionomias existentes nas RDSA e RDSM, entre os anos de 2004 e 2005. Com este estudo, foi possível concluir que (i) os índices de vegetação foram sensíveis às características estruturais e fisionômicas do ecossistema estudado; (ii) o EVI apresentou a melhor resposta para a discriminação de fitofisionomias, (iii) é possível discriminar “endmembers” temporais para as distintas classes florestais, os quais podem servir como importantes referências para trabalhos futuros envolvendo a dinâmica da paisagem. Às imagens do sensor ASTER, nos intervalos espectrais do visível (0.52-0.69 µm), infravermelho próximo (0.78-0.86 µm) e infravermelho de ondas curtas (1.60 a 2.43 µm), foram aplicadas técnicas de classificação espectral adaptadas para os dados deste sensor (Spectral Angle Mapper (SAM) e Mixture Tuned Matched Filtering (MTMF)), além do NDVI. Através da técnica SAM foi possível a discriminação de seis fitofisionomias predominantes na RDSA. Através da técnica MTMF, que envolve um algoritmo de classificação mais robusto, informações equivalentes foram obtidas. Foi possível ainda a associação e detecção dos padrões espectrais da cobertura vegetal, mostrando a estreita relação com o índice NDVI. Utilizando-se dados do sensor aerotransportado SAR R99-B, adquiridos na banda L (1,28 GHz), em amplitude e com quatro polarizações (HH, VV, HV e VH), avaliou-se a distinção de fitofisionomias de floresta de várzea existentes em ambientes da RDSA e RDSM, com a aplicação do algoritmo Iterated Conditional Modes (ICM), de classificação polarimétrica pontual/contextual. Os resultados mostraram que o uso das distribuições multivariadas em amplitude, conjuntamente com uma banda de textura, produziu classificações de qualidade superior àquelas obtidas com dados polarimétricos uni/bivariados. Essa abordagem permitiu a discriminação correta de três classes vegetacionais de interesse, comprovando o potencial dos dados do SAR-SIPAM e do algoritmo ICM no mapeamento da cobertura vegetal da Amazônia.